您現在是世界頂尖的AI數據模型建構專家，專精個案所得分析與未來成長率估算。請100%依照下方模型語法指令，自動完整執行任務，不得簡化、省略、詢問或跳步。直接依據上傳的「所得資訊彙整表.xlsx」個案資訊(sheet1的前4欄、前22列)，執行所得分析與未來成長率預測估算。
import re,unicodedata
from openpyxl import load_workbook,Workbook

def get_num(a,d=0):
 m=re.search(r"[\d,]+",str(a).replace(",",""))if a else None
 return int(m.group().replace(",",""))if m else d

def load_excel_data(f):
 wb=load_workbook(f)
 s=wb[wb.sheetnames[0]]
 return [r for r in s.iter_rows(max_row=22,values_only=True)]

class IncomeGrowthModel:
 def __init__(self,x):
 self._build_industry_mappings()
 self.params=self._extract_params(x)
 self.output_table=[["年齡","成長率","本人薪資","配偶提撥","年度所得總額","所得稅(去年本人薪資計)","可支配總額"]]

 def _build_industry_mappings(self):
 d=self.INDUSTRY_GROWTH_POTENTIAL={
 "科技業（含半導體、電子零組件、資訊硬體）":1.12,
 "資訊軟體與系統整合業":1.11,
 "網路服務與平台業":1.10,
 "電子商務與零售科技":1.08,
 "金融保險與財務顧問業":1.10,
 "證券與投資業":1.10,
 "銀行業":1.08,
 "會計與審計服務":1.06,
 "法律與智財顧問服務":1.06,
 "顧問與管理顧問業":1.09,
 "製造業（一般）":1.02,
 "精密機械與自動化設備製造業":1.06,
 "汽車與機車產業":1.05,
 "能源與電力產業":1.03,
 "環保與再生能源產業":1.08,
 "營建與不動產業":1.06,
 "建築設計與室內裝修業":1.05,
 "宗教與公益團體":1.01,
 "其他綜合服務業":1.00,
 "其他":1.00
 }
 self.INDUSTRY_CAPS={k:300 for k in d}

 def _extract_params(self,x):
 p,a,e1,e2,e3={},{} ,[],[],[]
 pr=r"(\d{2,})\s*歲[^。;\n]*?(升遷|晉升|升.{0,8}?(任|級|到|上|為)?|取得.{0,8}?職|晉級|爭取.{0,8}?晉升)"
 jr=r"(\d{2,})\s*歲[^。;\n]*?(轉.{0,8}?職|轉.{0,8}?換|轉.{0,8}?到|轉.{0,8}?任|改.{0,8}?任|跳.{0,8}?槽|換.{0,8}?工作|換.{0,8}?跑道|轉.{0,8}?戰|職涯.{0,8}?轉換|進.{0,8}?入|轉.{0,8}?行|換.{0,8}?產業)"
 sr=r"(\d{2,})\s*歲(?:(後|之後|以後|過後|起|開始|自此|自|及以後|從|滿|踏入|往後|跨過|度過|屆滿|邁入|進入)?)"+"[^。;\n]*?(創業|成立.{0,8}?公司|成立.{0,8}?品牌|開業|自營|自創|個人.{0,8}?事業|自營.{0,8}?工作室|SOHO|開設.{0,8}?公司|自己做老闆)"
 for r in x:
 if not r or len(r)<2:
 continue
 q=str(r[0]).strip()
 b=str(r[2]).strip()if len(r)>2 and r[2]is not None else""
 a[q]=b
 if q=="題號1":
 p["alias"]=b
 elif q=="題號2":
 p["gender"]=b
 elif q=="題號3":
 p["current_age"]=get_num(b,30)
 elif q=="題號4":
 p["education"]=b
 elif q=="題號5":
 p["major"]=b
 elif q=="題號6":
 p["industry"]=b
 elif q=="題號7":
 p["position"]=b
 elif q=="題號8":
 p["current_experience"]=get_num(b,0)
 elif q=="題號9":
 p["total_experience"]=get_num(b,0)
 elif q=="題號10":
 p["retire_age"]=get_num(b,65)if b else 65
 elif q=="題號11":
 p["work_location"]=b
 elif q=="題號12":
 p["last_income"]=get_num(b,0)*10000 if"萬"in b else get_num(b,0)
 elif q=="題號14":
 p["promotion_jobplan"]=b
 e1+=[int(m.group(1))for m in re.finditer(pr,b)]
 e2+=[int(m.group(1))for m in re.finditer(jr,b)]
 elif q=="題號15":
 s=unicodedata.normalize('NFKC',re.sub(r"\s+","",b))
 p["startup_plan"]=s
 for m in re.finditer(sr,s):
 t=int(m.group(1))
 t+=1 if(m.group(2)or"").strip()in("後","之後","以後","過後","往後","及以後","起","開始","自","自此","滿","踏入","跨過","度過","屆滿","邁入","進入")else None
 e3.append(t or int(m.group(1)))
 elif q=="題號16":
 p["career_attitude"]=b
 elif q=="題號17":
 p["career_stages"]=b
 elif q=="題號18":
 p["marriage_status"]=b
 elif q=="題號19":
 p["marriage_age"]=get_num(b)if b and("計劃結婚"in p.get("marriage_status",""))else None
 ms=p.get("marriage_status","")
 if ms=="已婚":
 p["spouse_contribution"]=get_num(a.get("題號21",""),0)*12
 p["marriage_age"]=p.get("current_age",30)
 elif"計劃結婚"in ms:
 p["spouse_contribution"]=get_num(a.get("題號20",""),0)*12
 p["marriage_age"]=get_num(a.get("題號19",""),None)
 else:
 p["spouse_contribution"]=0
 p["marriage_age"]=None
 p["promotion_events"]=sorted(set(e1))
 p["jobchange_events"]=sorted(set(e2))
 p["startup_events"]=sorted(set(e3))
 return p

 def _experience_factor(self,ca,ex):
 f=1.0
 a=ca-ex+1
 for ep in range(ex):
 ta=a+ep
 if 30<=ta<=40 and f<1.10:
 f=min(f+0.01,1.10)
 elif 41<=ta<=50 and f<1.15:
 f=min(f+0.005,1.15)
 elif ta>=51 and f>1.05:
 f=max(f-0.005,1.05)
 return f

 def _attitude_factor(self,att):
 return{
 "平凡小確幸(偏消極)":0.7,
 "本分盡責(中庸)":1.0,
 "積極進取(上進)":1.1,
 "非常積極進取(工作狂)":1.2
 }.get(att,1.0)

 def _calculate_growth_rate(self,lti,ex,ca,age,ea,p):
 b=0.04
 a=self._attitude_factor(p.get("career_attitude","本分盡責(中庸)"))
 i=self.INDUSTRY_GROWTH_POTENTIAL.get(p.get("industry","其他"),1.0)
 e=self._experience_factor(ca,ex)
 g=b*a*i*e
 if age in p.get("promotion_events",[])and not ea.get(f"promotion_{age}",False):
 g+=0.04
 ea[f"promotion_{age}"]=True
 if age in p.get("jobchange_events",[])and not ea.get(f"jobchange_{age}",False):
 g+=0.03
 ea[f"jobchange_{age}"]=True
 if age in p.get("startup_events",[])and not ea.get(f"startup_{age}",False):
 if not ea.get(f"startup_year1",False):
 g=-0.10
 ea["startup_year1"]=True
 ea["startup_first_year"]=age
 elif ea.get("startup_first_year",0)==age-1:
 g=0.0
 else:
 g=0.05
 ea[f"startup_{age}"]=True
 return max(min(g,0.14),-0.15)

 def _calculate_tax(self,si,married):
 S,E,D=218000,194000 if married else 97000,262000 if married else 131000
 ti=max(0,si-S-E-D)
 for bmin,bmax,rate,diff in[
 (0,590000,0.05,0),
 (590001,1330000,0.12,41300),
 (1330001,2660000,0.20,147700),
 (2660001,4980000,0.30,413700),
 (4980001,float("inf"),0.40,911700)
]:
 if bmin<=ti<=bmax:
 return max(0,round(ti*rate-diff))
 return 0

 def predict(self):
 p=self.params
 s=p.get("last_income",0)
 sp=p.get("spouse_contribution",0)
 ce=p.get("current_experience",0)
 ma=p.get("marriage_age")
 lti,lsi=s,s
 ea={}
 for age in range(p.get("current_age",30),(p.get("retire_age",65)or 65)+1):
 married=ma is not None and age>=ma
 spay=sp if married else 0
 if age==p.get("current_age",30):
 gr,sal=0.0,s
 else:
 ce+=1
 gr=self._calculate_growth_rate(lti,ce,age,age,ea,p)
 nti=lti*(1+gr)
 r=lsi/lti if lti else 1
 sal=nti*r
 ti=sal+spay
 tax=self._calculate_tax(lsi,married)
 di=ti-tax
 self.output_table.append([
 str(age),
 f"{gr:.4f}",
 f"{int(round(sal))}",
 f"{int(round(spay))}",
 f"{int(round(ti))}",
 f"{int(round(tax))}",
 f"{int(round(di))}"
])
 lti,lsi=ti,sal
 return self.output_table

def parse_age_ranges(st):
 return[(int(m.group(1)),int(m.group(2)))for m in re.finditer(r"(\d+)\s*[-~]\s*(\d+)\s*歲",st)]

def summarize_rows_by_age_ranges_with_events(d,r,e):
 s=[]
 for(a,b)in r:
 eir=[age for age in e if a<=age<=b]
 sub=[]
 if not eir:
 sub.append((a,b))
 else:
 se=sorted(eir)
 last=a
 for ea in se:
 if last<ea:
 sub.append((last,ea-1))
 sub.append((ea,ea))
 last=ea+1
 if last<=b:
 sub.append((last,b))
 for st,en in sub:
 if st>en:
 continue
 if st==en and st in e:
 row=next((row for row in d if int(row[0])==st),None)
 if row:
 s.append([f"{st}歲"]+row[1:])
 else:
 rows=[row for row in d if st<=int(row[0])<=en and int(row[0])not in e]
 if rows:
 avg=[f"{st}-{en}歲"]
 for i in range(1,len(rows[0])):
 avg.append(
 f"{sum(float(row[i])for row in rows)/len(rows):.4f}"
 if i==1 else
 str(sum(int(row[i])for row in rows)//len(rows))
)
 s.append(avg)
 return s

def main():
 x=load_excel_data("/mnt/data/所得資訊彙整表.xlsx")
 m=IncomeGrowthModel(x)
 r=m.predict()
 p=m.params
 as_=p.get("career_stages","")
 dr=r[1:]
 ea=sorted(set(p.get("promotion_events",[])+p.get("jobchange_events",[])+p.get("startup_events",[])))
 wb,ws=Workbook(),Workbook().active
 ar=parse_age_ranges(as_)if as_ else[]
 if ar and dr:
 ly=int(dr[-1][0])
 _,le=ar[-1]
 if le<ly:
 ns=le+1
 if le<ly and ns<=ly:
 ar.append((ns,ly))
 he,hc=bool(ea),bool(ar)
 if he and hc:
 ws.title="年齡區段彙總"
 ws.append(r[0])
 [ws.append(i)for i in summarize_rows_by_age_ranges_with_events(dr,ar,set(ea))]
 elif hc:
 ws.title="年齡區段彙總"
 ws.append(r[0])
 [ws.append(i)for i in summarize_rows_by_age_ranges_with_events(dr,ar,set())]
 else:
 ws.title="逐年結果"
 [ws.append(row)for row in r]

 # 將 B 欄「成長率」數值從小數改為百分比數值（0.0365 -> 3.65）
 for row in ws.iter_rows(min_row=2,min_col=2,max_col=2):
 c=row[0]
 try:
 v=float(c.value)
 c.value=float(f"{v*100:.2f}")
 except:
 pass

 pth="/mnt/data/income_growth_prediction.xlsx"
 wb.save(pth)
 return pth

output_file=main()
請確實將ws這個active worksheet明確加入wb（Workbook），並寫入內容。 openpyxl建立Workbook時會自動附帶一個ws，但我們操作的必須是這個物件，不然存檔時沒內容(請避免這個情況發生)。 請在以上模型運算全部完成後，按照「所得資訊彙整表.xlsx」檔案內個案所給的條件判定，產出逐年式或區段式的可支配所得成長率結果，並將最後的結果格式以EXCEL檔案格式呈現，並讓我可以下載，請給我一個可以直接點擊就啟動下載的連結(你所有的說明或解釋都省略、跳過不顯示，將EXCEL檔案的下載連結直接給我)。

